Article ID Journal Published Year Pages File Type
2581065 Chemico-Biological Interactions 2010 8 Pages PDF
Abstract

Iron and copper ions, in their unbound form, may lead to the generation of reactive oxygen species via Haber–Weiss and/or Fenton reactions. In addition, it has been shown that copper ions can irreversibly and non-specifically bind to thiol groups in proteins. This non-specific binding property has not been fully addressed for iron ions. Thus, the present study compares both the pro-oxidant and the non-specific binding properties of Fe3+ and Cu2+, using rat liver cytosol and microsomes as biological systems. Our data show that, in the absence of proteins, Cu2+/ascorbate elicited more oxygen consumption than Fe3+/ascorbate under identical conditions. Presence of cytosolic and microsomal protein, however, differentially altered oxygen consumption patterns. In addition, Cu2+/ascorbate increased microsomal lipid peroxidation and decreased cytosolic and microsomal content of thiol groups more efficiently than Fe3+/ascorbate. Finally, Fe3+/ascorbate and Cu2+/ascorbate inhibited in different ways cytosolic and microsomal glutathione S-transferase (GST) activities, which are differentially sensitive to oxidants. Moreover, in the absence of ascorbate, only Cu2+ decreased the content of cytosolic and microsomal thiol groups and inhibited cytosolic and microsomal GST activities. Catechin partially prevented the damage to thiol groups elicited by Fe3+/ascorbate and Cu2+/ascorbate but not by Cu2+ alone. N-Acetylcysteine completely prevented the damage elicited by Cu2+/ascorbate, Fe3+/ascorbate and Cu2+ alone. N-Acetylcysteine also completely reversed the damage to thiol groups elicited by Fe3+/ascorbate, partially reversed that of Cu2+/ascorbate but failed to reverse the damage promoted by Cu2+ alone. Our data are discussed in terms to the potential damage that the accumulation of iron and copper ions can promote in biological systems.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , ,