Article ID Journal Published Year Pages File Type
2581384 Chemico-Biological Interactions 2009 8 Pages PDF
Abstract

Drug-induced organ injury is a multifaceted process, involving numerous cell types and mediators, and remains a significant safety issue in pharmaceutical development and clinical therapy. Organotypic in vitro models, including precision-cut tissue slices, possess the multi-cellular, structural and functional features of in vivo tissue to facilitate the elucidation of mechanisms of drug-induced organ injury and to characterize species susceptibilities. This study reviews diclofenac-induced hepatotoxicity and presents data comparing the metabolism, specific binding of diclofenac products to cellular proteins and the effects on liver function in rat, monkey and human liver slices. Concentration- and time-dependent increases in specific protein binding demonstrate the progressive nature of the toxicity. Altered liver function correlated with the species differences in the extent of diclofenac metabolism (rat > monkey or human). Liver injury was not detectable within 24 h, unlike specific protein binding, yet it developed by 48 h and lower concentrations of diclofenac exhibited effects by 72 h, demonstrating that continued metabolism and the accumulation of specific protein binding could lead to altered cell function. The decline of liver slice ATP levels at concentrations not affecting GSH levels implicates mitochondrial dysfunction as a primary indicator of hepatotoxicity, of which oxidative stress may be a contributing cause. Diclofenac affected monkey liver slices function at similar concentrations as rat liver slices, while human liver slices exhibited less extensive specific protein binding and required higher diclofenac concentrations to alter cell function.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
,