Article ID Journal Published Year Pages File Type
2583095 Environmental Toxicology and Pharmacology 2013 8 Pages PDF
Abstract

•Induction of CYP1A by BaP or BNF increases BaP–DNA adducts in rat liver and intestine.•It also increases BaP–DNA adducts in ex vivo incubations of microsomes with BaP.•Levels of BaP–DNA adducts generated in vivo are different from those formed in vitro.

Benzo[a]pyrene (BaP) is a human carcinogen requiring metabolic activation prior to reaction with DNA. Cytochrome P450 (CYP) 1A1 is the most important hepatic and intestinal enzyme in both BaP activation and detoxification. CYP1A2 is also capable of oxidizing BaP, but to a lesser extent. The induction of CYP1A1/2 by BaP and/or β-naphthoflavone in liver and small intestine of rats was investigated. Both BaP and β-naphthoflavone induced CYP1A expression and increased enzyme activities in both organs. Moreover, the induction of CYP1A enzyme activities resulted in an increase in formation of BaP–DNA adducts detected by 32P-postlabeling in rat liver and in the distal part of small intestine in vivo. The increases in CYP1A enzyme activity were also associated with bioactivation of BaP and elevated BaP–DNA adduct levels in ex vivo incubations of microsomes of both organs with DNA and BaP. These findings indicate a stimulating effect of both compounds on BaP-induced carcinogenesis.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , , ,