Article ID Journal Published Year Pages File Type
2589674 NeuroToxicology 2014 10 Pages PDF
Abstract

•Abrin is a potent plant toxin obtained from seeds of Abrus precatorius belonging to ribosome inactivating proteins.•Involvement of oxidative stress mediated pathways reported.•Abrin exposure in vivo results into oxidative stress leading to neurotoxicity.•Serum and brain AChE significantly inhibited after abrin exposure.•Histopathology of brain and myelin basic protein expression levels in brain showed neurodegeneration and demyelination potential of abrin toxin.

Abrin is a potent plant toxin. It is a heterodimeric protein toxin which is obtained from the seeds of Abrus precatorius plant. At cellular level abrin causes protein synthesis inhibition by removing the specific adenine residue (A4324) from the 28s rRNA of the 60S – ribosomal subunit. In the present study we investigated the role of oxidative stress in neurotoxic potential and demyelinating effects of abrin on brain. The mechanism by which abrin induces oxidative damage and toxicity in brain are relatively unknown. Animals were exposed to 0.4 and 1.0 LD50 abrin dose by intraperitoneal route and observed for 1 and 3 day post-toxin exposure. Oxidative stress occurred in brain due to abrin was confirmed in terms of increased reactive oxygen species (ROS), glutathione depletion and increased lipid peroxidation. Significant increase in blood and brain ROS was observed at day 3, 1 LD50. Abrin induced changes in the neurotransmitters (5-hydroxy tryptamine, norepinephrine, dopamine and monoamine oxidase) levels were evaluated by spectroflourometry. Increase in the levels of 5-HT and NE was observed after abrin exposure. MAO activity was found to be decreased in abrin exposed animals compared to control. Significant inhibition in the activity of acetylcholine esterase enzyme in brain and serum was reported for both the doses and time points. Western blot analysis of iNOS expression indicated that abrin treatment resulted in dose and time dependent increase. Furthermore, protein expression of myelin basic protein (MBP) was down regulated in a dose and time dependent manner. Brain histopathology was carried out and cortical brain region showed demyelination after abrin exposure. Results confirmed that abrin poisoning leads to neurodegeneration and neurotoxicity mediated through oxidative stress, AChE inhibition, lipid peroxidation and decrease in MBP levels.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , ,