Article ID Journal Published Year Pages File Type
2589875 NeuroToxicology 2011 7 Pages PDF
Abstract

Parkinson's disease (PD) is a neurodegenerative disorder marked by the selective loss of dopaminergic neurons, leading to a decrease of the neurotransmitter dopamine (DA). DA is metabolized by monoamine oxidase to 3,4-dihydroxyphenyacetaldehyde (DOPAL). While the mechanism of pathogenesis of PD is unknown, DOPAL has demonstrated the ability to covalently modify proteins and cause cell death at concentrations elevated from physiologic levels. Currently, the identities of protein targets of the aldehyde are unknown, but previous studies have demonstrated the ability of catechols and other DA-catabolism products to interact with and inhibit tyrosine hydroxylase (TH). Given that DOPAL is structurally related to DA and is a highly reactive electrophile, it was hypothesized to modify and inhibit TH.The data presented in this study positively identified TH as a protein target of DOPAL modification and inhibition. Furthermore, western blot analysis demonstrated a concentration-dependent decrease in antibody recognition of TH. DOPAL in cell lysate significantly inhibited TH activity as measured by decreased l-DOPA production. Inhibition of TH was semi-reversible, with the recovery of activity being time and concentration-dependent upon removal of DOPAL. These data indicate DOPAL to be a reactive DA-metabolite with the capability of modifying and inhibiting an enzyme important to DA synthesis.

► DOPAL is an endogenous neurotoxin capable of protein adduction. ► DOPAL modifies and inhibits tyrosine hydroxylase at low concentrations. ► Tyrosine hydroxylase exhibits semi-reversible inhibition by DOPAL. ► Dopaminergic cells display mitochondrial dysfunction in the presence of DOPAL.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , ,