Article ID Journal Published Year Pages File Type
2590590 NeuroToxicology 2006 8 Pages PDF
Abstract

Previous studies in this laboratory indicated that manganese (Mn) exposure in vitro increases the expression of transferrin receptor (TfR) by enhancing the binding of iron regulatory proteins (IRPs) to iron responsive element-containing RNA. The current study further tested the hypothesis that in vivo exposure to Mn increased TfR expression at both blood–brain barrier (BBB) and blood–cerebrospinal fluid (CSF) barrier (BCB), which contributes to altered iron (Fe) homeostasis in the CSF. Groups of rats (10–11 each) received oral gavages at doses of 5 mg Mn/kg or 15 mg Mn/kg as MnCl2 once daily for 30 days. Blood, CSF, and choroid plexus were collected and brain capillary fractions were separated from the regional parenchyma. Metal analyses showed that oral Mn exposure decreased concentrations of Fe in serum (−66%) but increased Fe in the CSF (+167%). Gel shift assay showed that Mn caused a dose-dependent increase of binding of IRP1 to iron responsive element-containing RNA in BCB in the choroid plexus (+70%), in regional BBB of capillaries of striatum (+39%), hippocampus (+56%), frontal cortex (+49%), and in brain parenchyma of striatum (+67%), hippocampus (+39%) and cerebellum (+28%). Real-time RT-PCR demonstrated that Mn exposure significantly increased the expression of TfR mRNA in choroid plexus and striatum with concomitant reduction in the expression of ferritin (Ft) mRNA. Collectively, these data indicate that in vivo Mn exposure results in Fe redistribution in body fluids through regulating the expression of TfR and ferritin at BCB and selected regional BBB. The disrupted Fe transport by brain barriers may underlie the distorted Fe homeostasis in the CSF.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , , ,