Article ID Journal Published Year Pages File Type
2590725 NeuroToxicology 2007 8 Pages PDF
Abstract

This study investigated the relationship between long-term occupational manganese (Mn) exposure on the regional Mn concentration in the brain, neuronal loss, and neurobehavioral effects on welders. 1H MRS of the basal ganglia (BG) was performed on 20 male welders and 10 age- and gender-matched, non-office, control workers in a shipyard to assess the metabolic change, and the N-acetylaspartate (NAA)/creatine (Cr), choline (Cho)/Cr and NAA/Cho ratios, by the level of Mn exposure. We also assessed the signal intensity of T1-weighted image of magnetic resonance imaging (MRI) on globus pallidus (GP) compared to that of the frontal white matter (pallidal index, PI). The welders had significantly higher signal intensity than the controls. PI showed a significant dose–response relationship with cumulative exposure index (CEI) (r = 0.54, p = 0.002). CEI and PI showed different relationships with NAA/Cr according to smoking status, and the correlation was evident only in non-smokers (r = −0.73 and −0.57, respectively). There were no significant differences between the welders and the controls in NAA/Cr, Cho/Cr, and NAA/Cho ratios obtained from BG. CEI was positively correlated with simple reaction time. PI was positively correlated with mean sway (MSWAY), sway area (SWAYA), and sway intensity (SWAYI), and negatively correlated with maximum frequency (MAXF). After categorizing the subjects into two groups according to NAA/Cr ratio level, the low NAA/Cr ratio group showed significantly lower score on digit span backward and significantly higher score on MSWAY, SWAYA and SWAYI in regression analysis than the high NAA/Cr ratio group. We speculated that the NAA/Cr ratio of MRS in BG seems to reflect the cumulative effect of Mn exposure on the human brain. Due to uneven distribution of smoking among the welders and the controls, in addition to the small number of subjects in our study, our findings are needed further studies with a larger number of subjects.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , , , ,