Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2597150 | Toxicology | 2008 | 6 Pages |
Abstract
The antidepressant desipramine has been shown to induce a rise in cytosolic Ca2+ levels ([Ca2+]i) and cytotoxicity in human PC3 prostate cancer cells, but the mechanisms underlying its cytotoxic effect is unclear. Cell viability was examined by WST-1 assays. Apoptosis was assessed by propidium iodide staining and an increase in caspase-3 activation. Phosphorylation of protein kinases was analyzed by immunoblotting. Desipramine caused cell death via apoptosis in a concentration-dependent manner. Immunoblotting data revealed that desipramine activated the phosphorylation of c-Jun NH2-terminal kinase (JNK), but not extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). SP600125 (a selective JNK inhibitor) partially prevented cells from apoptosis. Pretreatment with BAPTA/AM, a Ca2+ chelator, to prevent desipramine-induced [Ca2+]i rises worsened desipramine-induced cytotoxicity. Immunoblotting data suggest that BAPTA/AM pretreatment enhanced desipramine-evoked JNK phosphorylation and caspase-3 cleavage. The results suggest that in PC3 cells, desipramine caused apoptosis via inducing JNK-associated caspase-3 activation, and [Ca2+]i rises may slow down or alleviate desipramine-induced cytotoxicity.
Related Topics
Life Sciences
Environmental Science
Health, Toxicology and Mutagenesis
Authors
Hong-Chiang Chang, Chorng-Chih Huang, Chun-Jen Huang, Jin-Shiung Cheng, Shiuh-In Liu, Jeng-Yu Tsai, Hong-Tai Chang, Jong-Khing Huang, Chiang-Ting Chou, Chung-Ren Jan,