Article ID Journal Published Year Pages File Type
2597441 Toxicology 2007 9 Pages PDF
Abstract

An increase in polydrug abuse is a major problem worldwide. The coadministration of methamphetamine and morphine increased subacute toxicity or lethality in rodents. However, the underlying mechanisms by which lethality is increased by the coadministration of methamphetamine and morphine are not yet fully understood. Coadministered methamphetamine and morphine induced lethality by more than 80% in BALB/c mice, accompanied by the rupture of cells in the kidney and liver, and an increase in poly (ADP-ribose) polymerase (PARP)-immunoreactive cells in the heart, kidney and liver. The lethal effect and the increase in the incidence of rupture or PARP-immunoreactive cells induced by the coadministration of methamphetamine and morphine was significantly attenuated by pretreatment with mepacrine (phospholipase A2 inhibitor) or fullerene (a radical scavenger), or by cooling from 30 to 90 min after drug administration. Furthermore, based on the results of the electron spin resonance spin-trapping technique, hydroxyl radicals were increased by the administration of methamphetamine and morphine, and these increased hydroxyl radicals were potently attenuated by fullerene and cooling. These results suggest that hydroxyl radicals plays an important role in the increased lethality induced by the coadministration of methamphetamine plus morphine. The potency of cooling or drugs for decreasing the subacute toxicity or lethality induced by the coadministration of methamphetamine and morphine was in the order fullerene = cooling > mepacrine. These results indicate that fullerene and cooling are beneficial for preventing death that is induced by the coadministration of methamphetamine and morphine.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , , , ,