Article ID Journal Published Year Pages File Type
2598073 Toxicology 2006 7 Pages PDF
Abstract

Lipopolysaccharide (LPS) has been associated with adverse developmental outcomes including embryonic resorption, intra-uterine fetal death (IUFD), intra-uterine growth retardation (IUGR) and preterm labor. Reactive oxygen species (ROS) mediate LPS-induced developmental toxicity. Ascorbic acid is an antioxidant. In the present study, we investigated the effect of ascorbic acid on LPS-induced IUFD and IUGR in mice. All ICR pregnant mice except controls received an intraperitoneal (75 μg/kg, i.p.) injection of LPS daily on gd 15–17. The experiment was carried out in three different modes. In mode A, the pregnant mice were pretreated with a single dose (500 mg/kg, i.p.) of ascorbic acid before LPS. In mode B, the pregnant mice were administered with a single dose (500 mg/kg, i.p.) of ascorbic acid at 3 h after LPS. In mode C, the pregnant mice were administered with 500 mg/kg (i.p.) of ascorbic acid at 30 min before LPS, followed by additional dose (500 mg/kg, i.p.) of ascorbic acid at 3 h after LPS. The number of live fetuses, dead fetuses and resorption sites was counted on gd 18. Live fetuses in each litter were weighed. Crown-rump and tail lengths were examined and skeletal development was evaluated. Results showed that maternally administered LPS significantly increased fetal mortality, decreased fetal weight and crown-rump and tail lengths of live fetuses, and retarded skeletal ossification in caudal vertebrae, anterior and posterior phalanges, and supraoccipital bone. LPS-induced IUFD and IUGR were associated with lipid peroxidation and GSH depletion in maternal liver, placenta and fetal liver. Pre-treatment with ascorbic acid significantly attenuated LPS-induced lipid peroxidation, decreased fetal mortality, and reversed LPS-induced fetal growth and skeletal development retardation. By contrast to pre-treatment, post-treatment with ascorbic acid had less effect on LPS-induced IUFD, although post-treatment significantly attenuated LPS-induced lipid peroxidation and reversed LPS-induced fetal growth and skeletal development retardation. Furthermore, post-treatment with ascorbic acid reduced the protective effects of pre-treatment on LPS-induced IUFD. All these results suggest that pre-treatment with ascorbic acid protected against LPS-induced fetal death and reversed LPS-induced growth and skeletal development retardation via counteracting LPS-induced oxidative stress, whereas post-treatment had less effect on LPS-induced IUFD.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , , ,