Article ID Journal Published Year Pages File Type
2599118 Toxicology Letters 2014 8 Pages PDF
Abstract

•Elucidation of ANIT-induced cholestasis based on interruption of bile acid transport.•Metabonomics study of ANIT-treated sandwich-cultured rat hepatocytes.•Discovery of the direct cholestatic effect of ANIT on hepatic parenchymal cells.

Alpha-naphthylisothiocyanate (ANIT) induces intra-hepatic cholestasis mixed with hepatocellular injury mainly by bile ductular damage. However, its direct effect on hepatic parenchymal cells (hepatocytes) is unclear. Sandwich-cultured rat hepatocytes (SCRH) were applied to clarify this question. Though cytotoxicity was not observed (0–180 μM) in ANIT-treated SCRH, metabonomics analysis of the hepatocytes revealed a shift in the metabolic pattern and a decrease in cellular cholesterol level, accompanied by an increase in total bile acids after 48 h ANIT (5–45 μM) treatment. To assess the function of major hepatic bile acid transporters, the accumulation and efflux of [D-Pen2,5]-enkephalin (DPDPE), 5 (and 6)-carboxy-2′,7′-dichlorofluorescein (CDF) diacetate promoiety and deuterium-labeled sodium taurocholate (d8-TCA) were measured. ANIT incubation for either 30 min or 48 h led to dose-dependent decreases in the biliary excretion index (BEI) of DPDPE and CDF, as well as the intracellular accumulation of d8-TCA, CDF and DPDPE. The basolateral efflux of d8-TCA was also decreased with its BEI barely changed. mRNA expression of multiple uptake transporters and bile acid synthesizing enzymes was down-regulated after 48 h incubation. In conclusion, ANIT could directly induce retention of bile acids in hepatocytes by inhibiting the function of bile acid transporters, which might contribute to its cholestatic effect.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , , , , ,