Article ID Journal Published Year Pages File Type
2599357 Toxicology Letters 2013 12 Pages PDF
Abstract

•In vitro exposure to CE can neoplastically transform human prostate cells by these methods.•Boosting proliferation and protein abundance of cyclin D1 and c-myc.•Increased expression of ERα and its downstream IGF-1R.•Reduced expression of ERβ and its downstream tumor suppressor FOXO-1.•Increased composite comet score, colony formation in soft agar and matrix invasion.

In the current study, the non-transformed prostatic epithelial cells (BPH-1) were exposed to the catechol estrogens (CE) 2-hydroxyestradiol (2-OHE2) or 4-hydroxyestradiol (4-OHE2), or the parent hormone 17-β-estradiol (E2) at an equimolar concentration (1 μM) for a period of 6 weeks. It was found that both 2-OHE2 and 4-OHE2 have more potent proliferation-enhancing effect than E2. Exposure to 2-OHE2, 4-OHE2 or E2 resulted in a significant increase in the protein abundance of cyclin D1 and c-myc. The treated cells exhibited a shift toward the proliferative phase as indicated by FACScan. BPH-1 cells treated with 4-OHE2 showed increased abundance of estrogen receptor-α (ERα) and its downstream IGF-1R. Reduced abundance of estrogen receptor-β (ERβ) and its downstream tumor suppressor FOXO-1 were observed in cells exposed to E2, 2-OHE2 and, to a greater extent, 4-OHE2. Comet assay revealed that CE, especially 4-OHE2, elicited significant genotoxic effects as compared to E2. 4-OHE2 showed greater ability to neoplastically transform BPH-1 cells as indicated by increased colony forming capacity in soft agar and matrix invasion. In conclusion, in vitro exposure to CE could neoplastically transform human prostatic epithelial cells. Further, 4-OHE2 is more carcinogenic to prostate epithelial cells than the parent hormone E2.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , ,