Article ID Journal Published Year Pages File Type
2599877 Toxicology Letters 2011 5 Pages PDF
Abstract

Toluene, an industrial organic solvent, is voluntarily inhaled as drug of abuse. Because inhibition of N-methyl-d-aspartate (NMDA) receptors is one of the possible mechanisms underlying developmental neurotoxicity of toluene, the purpose of the present study was to examine the effects of toluene exposure during two major neurodevelopmental stages, brain growth spurt and adolescence, on NMDA receptor-mediated current. Rats were administered with toluene (500 mg/kg, i.p.) or corn oil daily over postnatal days (PN) 4–9 (brain growth spurt) or PN 21–26 (early adolescence). Intracellular electrophysiological recordings employing in CA1 pyramidal neurons in the hippocampal slices were performed during PN 30–38. Toluene exposure during brain growth spurt enhanced NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) by electrical stimulation, but impaired the paired-pulse facilitation and NMDA response by exogenous application of NMDA. Toluene exposure during adolescence resulted in an increase in NMDA receptor-mediated EPSCs and a decrease in exogenous NMDA-induced currents, while lack of any effect on paired-pulse facilitation. These findings suggest that toluene exposure during brain growth spurt and adolescence might result in an increase in synaptic NMDA receptor responsiveness and a decrease in extrasynaptic NMDA receptor responsiveness, while only toluene exposure during brain growth spurt can produce presynaptic modulation in CA1 pyramidal neurons. The functional changes in NMDA receptor-mediated transmission underlying developmental toluene exposure may lead to the neurobehavioral disturbances.

• We study the effects of developmental toluene exposure on NMDA transmission. • Neonatal toluene alters synaptic and extrasynaptic NMDA receptor responsiveness. • Adolescent toluene produces the same effect. • Only neonatal toluene impairs presynaptic modulation.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , ,