Article ID Journal Published Year Pages File Type
260117 Construction and Building Materials 2010 7 Pages PDF
Abstract

A parameter-based acoustic emission (AE) technique is applied to AE signals acquired in physical experiments carried out on a series of predamaged reinforced concrete slabs. Three reinforced concrete slabs without shear reinforcement with dimensions of 1.50 × 1.50 × 0.23 m are subjected to cycles of a concentrated centric load with increasing peak values up to failure. The slabs had been previously exposed to impact loads in rockfall experiments and exhibit an unknown damage condition yet to be determined. Acoustic emissions are recorded during the loading and unloading cycles and evaluated. An analysis of load ratio and calm ratio associated with the Kaiser effect is performed. Damage classification is carried out successfully. Definitions of load ratio and calm ratio are reconsidered and specified. A static preloading of the slabs is approximated. The relationship between cracking process, failure mechanism and the acoustic emissions that occur is described and discussed.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,