Article ID Journal Published Year Pages File Type
2602848 Toxicology in Vitro 2008 6 Pages PDF
Abstract
The phototoxicity of low-energy ultraviolet radiation, such as UVA, can be enhanced by the presence of photosensitizing agents. Hence, co-exposure of cells to benzo[a]pyrene (BaP), a widespread environmental carcinogen and photosensitizing agent, and UVA may synergistically induce DNA damage. In this study, exposure of cells to various concentrations of BaP for 1 h followed by UVA irradiation (2 J/cm2) increased DNA damage and decreased cell viability. Expression of apoptosis-related proteins (caspase-9, caspase-3, PARP, and Bax) and hypodiploid DNA content (sub-G1) were not changed. LDH release into the culture medium increased in a dose-dependent manner with BaP under UVA irradiation, suggesting that cell death due to BaP/UVA co-treatment occurred via necrosis. Intracellular reactive oxygen species (ROS) levels were increased significantly in the co-exposed cells, and treatment with the polyphenol quercetin, but not with sodium azide or N-acetylcysteine, decreased ROS levels and increased cell viability in BaP/UVA-treated cells. In conclusion, UVA irradiation combined with BaP synergistically promoted necrosis of A549 cells by increasing intracellular ROS levels, and quercetin prevented BaP-enhanced phototoxicity due to UVA irradiation.
Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , , , , ,