Article ID Journal Published Year Pages File Type
260503 Construction and Building Materials 2010 11 Pages PDF
Abstract

This paper presents the effect of change in wall thickness of the steel tube (t), strength of in-filled concrete (fcu), cross-sectional area of the steel tube (A) and length of the tube (L) on ultimate axial load and axial shortening at ultimate point of rectangular concrete-filled steel tubes (CFT). Taguchi’s approach with an L9 orthogonal array is used to reduce the number of experiments. With the help of initial experiments, linear regression models are developed to predict the ultimate axial load and the axial shortening at ultimate point. A total of 243 rectangular CFT samples are tested to verify the accuracy of these models at three factors with three levels. The experimental results are analyzed using Analysis Of Variance to investigate the most influencing factor on strength and axial shortening of CFT samples. Comparisons are made with predicted column strengths using the existing design codes, AISC–LRFD-1994 and EC4-1994.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,