Article ID Journal Published Year Pages File Type
264162 Energy and Buildings 2010 8 Pages PDF
Abstract

In the Mediterranean area, there is increase in demand for summer cooling satisfied by electrically driven units in domestic and small commercial sectors; this involves electric peak loads and black-outs. Consequently, there is an increasing interest in small scale polygeneration systems fuelled by natural gas.In this paper, attention is paid to a test facility, located in Southern Italy, to carry out experimental analysis on a small scale polygeneration system based on a natural gas-fired Micro-CHP and a desiccant HVAC system. The MCHP provides thermal power, recovered from engine cooling and exhaust gas, for the regeneration of the desiccant wheel and electric power for the chiller, the auxiliaries and the external units (computers, lights, etc.). The HVAC system can also operate in traditional way, by interacting with electric grid and gas-fired boiler. An overview of the main experimental results is shown, considering both the desiccant wheel and the global polygeneration system.The experimental results confirm that the performances of the desiccant wheel are strongly influenced by outdoor thermal-hygrometric air properties and regeneration temperature. The polygeneration system guarantees primary energy savings up to 21.2% and greenhouse-gas emissions reductions up to 38.6% with respect to conventional HVAC systems based on separate energy “production”.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , ,