Article ID Journal Published Year Pages File Type
264616 Energy and Buildings 2010 10 Pages PDF
Abstract

Because of both the global energy crisis and the necessary improvement of energy efficiency in buildings, one of the largest sectors of energy consumption and greenhouse gases emissions, a strategy allowing managing energy resources is proposed. Its aim is reducing energy consumption and promoting the use of renewable energy, while ensuring thermal comfort, when heating “multi-energy” buildings, thanks to indoor temperature control schemes. Three schemes (based on a commonly used PID controller and on the combination of PID and model predictive or fuzzy controllers) were tested in simulation, using dynamic models describing the thermal behavior of a building, and fully met the management strategy's requirements, especially reducing the consumption of fossil energy. Three criteria describing the way energy is used and controlled in real-time were defined with the aim of evaluating the control schemes performance and adapting the strategy to the specific use of a building. The PID-MPC provided the best results while the PID-FLC proved to be a very good compromise, thanks to both the flexibility and the adaptability offered by fuzzy logic, between the easy-to-develop but not-very-efficient PID and the efficient but hard-to-develop PID-MPC.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , ,