Article ID Journal Published Year Pages File Type
264837 Energy and Buildings 2010 9 Pages PDF
Abstract

A typology of buildings representative of the building stock for the EU-25 was developed characterizing 72 building types in terms of their representativity, geographical distribution, size, material composition, and thermal insulation. The life cycle impacts of the building types were calculated for different environmental impact categories both at building and EU-25 level. The use phase of buildings, dominated by the energy demand for heating is by far the most important life cycle phase for existing and new buildings. The environmental impacts were allocated to single building elements. Ventilation, heat losses through roofs and external walls are important for a majority of single- and multi-family houses. Three improvement options were identified: additional roof insulation, additional façade insulation and new sealings to reduce ventilation. The measures yield a significant environmental improvement potential, which, for a majority of the buildings types analyse represent at least 20% compared to the base case. The major improvement potentials at EU-level lie with single-family houses, followed by multi-family houses. Smaller reductions are expected for high-rise buildings due to the smaller share in the overall building stock. For both roof insulation and reduced ventilation, the measures were shown to be economically profitable in a majority of buildings.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , , , , , , , ,