Article ID Journal Published Year Pages File Type
265045 Energy and Buildings 2008 6 Pages PDF
Abstract

Benchmarking is an important step in implementing energy conservation in a semiconductor fabrication plant (hereafter referred to as “fab”). A semiconductor cleanroom facility system is complicated, usually comprised of several sub-systems, such as a chilled water system, a make-up system, an exhaust air system, a compressed air system, a process cooling water (PCW) system, a nitrogen system, a vacuum system, and an ultra-pure water (UPW) system. It is a daunting task to allocate energy consumption and determine an optimum benchmark. This study aims to establish the energy benchmark of a typical 8-in. DRAM semiconductor fab through field measurement data. Results of the measured energy consumption index were: chilled water system (including chiller, chilled water pump and cooling tower): 0.257 kW/kW (=0.9 kW/RT) in summer and 0.245 kW/kW (=0.86 kW/RT) in winter air recirculation air system: 0.00018 kWh/m3 make-up air system: 0.0042 kWh/m3 general exhaust air system: 0.0007 kWh/m3 solvent exhaust air system: 0.0021 kWh/m3 acid exhaust air system: 0.0009 kWh/m3 alkaline exhaust air system: 0.0025 kWh/m3 nitrogen system: 0.2209 kWh/m3 compressed dry air system: 0.2250 kWh/m3 process cooling water system: 1.3535 kWh/m3 and ultra-pure water system: 9.5502 kWh/m3. These data can be used to assess the efficiency of different energy-saving schemes and as a good reference for factory authorities. The PCW system's status before and after implementing energy conservation is discussed.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , ,