Article ID Journal Published Year Pages File Type
265254 Energy and Buildings 2007 6 Pages PDF
Abstract

Solid desiccant air-conditioning systems present a promising solution, in terms of performance level and environmental protection, pointing out their potential to be coupled with thermal solar or waste heat energy source. Nevertheless, these systems are characterized by constraints to the load they can satisfy, through the trade-off between the dehumidification cooling capacity and the latent load of the conditioned space. On that level, one has to note that, for steady environmental conditions, the conditioned space does not present unique value of load, but range of load, corresponding to an array of acceptable temperature and (usually relative) humidity values. In this work a methodology is proposed for the definition of the system's achievable working range under specific set of space (comfort) requirements. Through this approach, the systems present greater potential for covering the space requirements, thus presenting more possibilities on a design basis, and more flexible control strategies, as well. The proposed methodology is presented and discussed through the case study of a solar desiccant air-conditioning system coupled to a typical residential building.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , ,