Article ID Journal Published Year Pages File Type
268474 Engineering Structures 2010 10 Pages PDF
Abstract

Nonlinear three-dimensional finite element modeling of precast, prestressed concrete spandrel beams is a challenging task and requires exploration of the effects of material parameters and modeling assumptions. To this end, the numerical results obtained using the commercial software ABAQUS/Standard were compared with existing experimental data. The sensitivity of the spandrel beam response to various parameters such as finite element type, dilation angle, fracture energy, tension stiffening, bearing stress distribution and support representation was investigated. The behavior of precast, prestressed concrete spandrels under vertical loading was found to be sensitive to the type of element, the dilation angle for the concrete, bearing stress distribution at the supports, and deck-tie stiffness. Many of the findings reported are believed to be applicable to other types of reinforced concrete structures.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , ,