Article ID Journal Published Year Pages File Type
268700 Engineering Structures 2010 13 Pages PDF
Abstract

The seismic design of structures located close to active faults must account for the special characteristics of ground motions in the near-fault region, in particular when these motions contain forward directivity (FD) effects. FD effects result in short duration motions with intense velocity pulses. In this study, the response of nonlinear-single-degree-of-freedom (SDOF) systems to FD motions is characterized by ductility and period-dependent strength reduction factors. This study compares reduction factors from two near-fault data sets, one containing 82 pulse-type motions with FD effects and the other containing 63 motions without FD effects. A statistical analysis was performed to determine if differences between reduction factors for the two sets were statistically significant. Results show that reduction factors for FD and non-FD near-fault motions are different, particularly in the range of periods of FD pulses (T=0.5T=0.5 to 3 s). Strength reduction factors for FD motions were shown to be dependent on earthquake magnitude and, to a lesser degree, site conditions. This magnitude dependence was not observed in non-FD motions. These conclusions indicate that common design specifications based on non-pulse ground motions cannot be directly applied to pulse-type, FD motions.

Keywords
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , ,