Article ID Journal Published Year Pages File Type
268820 Engineering Structures 2009 11 Pages PDF
Abstract

A robust stochastic design framework is discussed for design of mass dampers. The focus is on applications for the mitigation of the coupled heave and pitch response of Tension Leg Platforms under stochastic sea excitation. The framework presented fully addresses the complex relationship between the coupled dynamics of the platform, the stochastic excitation and the vibration of the dampers. Model parameters that have some level of uncertainty are probabilistically described. In this probabilistic setting, the system reliability is adopted as the design objective. Stochastic simulation is considered for evaluation of the system model response and the overall reliability performance. This way, all nonlinear characteristics of the structural response and environmental excitation are explicitly incorporated into their respective models. An efficient algorithm is discussed for performing the challenging stochastic design optimization. The ideas are illustrated in an application involving a tension leg platform with closely spaced frequencies for the heave and pitch degrees of freedom.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , ,