Article ID Journal Published Year Pages File Type
270961 Fusion Engineering and Design 2016 5 Pages PDF
Abstract

•The D-PRF of AlN-HIPB was studied.•The morphologies of AlN-HIPB remained compact after deuterium permeation tests.•The diffraction peaks maintained stable.•The nano-hardness increased after the deuterium permeation tests.

Hydrogen isotope permeation barriers (HIPB) have great potential applications in the fields of hydrogen energy and thermonuclear fusion. In this study, the AlN-HIPB were prepared on 316 L stainless steel by RF magnetron sputtering. The properties of AlN-HIPB were studied, including the deuterium permeation reduced factor (D-PRF), structures and nano-hardness. The D-PRF of 0.4 μm AlN-HIPB could reach 36 at 600 °C, and gradually rise with decreasing permeation temperature. The D-PRF reached 53 at 400 °C and 144 at 250 °C, respectively. The coatings remained dense and the grains were spherical after the deuterium permeation test. The AlN (1 0 0) diffraction peaks appeared and maintained stable during the deuterium permeation process. The nano-hardness of the coatings increased from 5.96 GPa to 7.41 GPa and the elasticity modulus also increased from 156.6 GPa to 210.6 GPa after the deuterium permeation.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , ,