Article ID Journal Published Year Pages File Type
271144 Fusion Engineering and Design 2013 13 Pages PDF
Abstract

•Calculation of real-time tokamak magnetic equilibrium with constraints from magnetic probes.•Parallel equilibrium calculation including the Motional Stark Effect diagnostic as additional constraints.•Feedback control of mirror for pre-emptive ECCD stabilization of neo-classical tearing modes.•Probe calibration by individual poloidal field coil currents.•Optimized parameters for poloidal field coil location, integrator gains and the location and orientation of magnetic probes.

The pre-emptive stabilization of a neoclassical tearing mode, NTM, requires the calculation of the tokamak magnetic equilibrium in real-time. A launcher mirror is positioned to deposit electron cyclotron current drive on the rational surface where the NTM should appear. A real-time Grad–Shafranov solver using constraints from magnetic probe, flux loop and Motional Stark Effect measurements has been developed to locate these rational surfaces and deliver this information to the mirror controller in real-time. A novel algorithm significantly reduces the number of operations required in the first and second step of the solver. Contour integrals are carried out to calculate the q profile as a function of normalized radius and the rational surfaces are found by spline interpolation. A cycle time of 0.6 ms for calculating two tokamak equilibria in parallel using four current basis functions with magnetic constraints only and using six current basis functions with magnetic and MSE constraints has been achieved. Using these tools, pre-emptive stabilization of a m/n = 3/2 NTM mode in ASDEX Upgrade could be demonstrated.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , , , , , , , , , , , , , , , , , ,