Article ID Journal Published Year Pages File Type
271324 Fusion Engineering and Design 2012 4 Pages PDF
Abstract

We present an integrated framework for (real-time) pattern recognition in fusion data. The main premise is the inherent probabilistic nature of measurements of plasma quantities. We propose the geodesic distance on probabilistic manifolds as a similarity measure between data points. Substructure induced by data dependencies may further reduce the dimensionality and redundancy of the data set. We present an application to confinement mode classification, showing the distinct advantage obtained by considering the measurement uncertainty and its geometry.

► We present an integrated framework for pattern recognition in fusion data. ► We model measurement uncertainty through an appropriate probability distribution. ► We use the geodesic distance on probabilistic manifolds as a similarity measure. ► We apply the framework to confinement mode classification. ► The classification accuracy benefits from uncertainty information and its geometry.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,