Article ID Journal Published Year Pages File Type
272024 Fusion Engineering and Design 2012 5 Pages PDF
Abstract

As early application of fusion technology, the fusion–fission hybrid systems/reactors could be used to transmute long-lived radioactive waste and produce fissile nuclear fuel. A fusion–fission hybrid reactor named FDS-MFX was designated for checking and validating the DEMO reactor blanket relevant technologies. The reactor design is based on easy-achieved plasma parameters extrapolated from the successful operation of tokamaks and the subcritical blanket is designed based on the well-developed technologies of fission reactors. In this contribution, a concept of the tritium system was designed for the FDS-MFX: the tritium was extracted from LiPb by the helium purge gas which contains a small amount of hydrogen gas, then the impurity gas was removed by cold trap, finally tritium was separated from hydrogen isotope by the cryogenic distillation and supply to reactor core. On the basis of data obtained by present design and experimental research, the system parameters were presented and discussed in detail. The results preliminarily demonstrated the engineering feasibility of the design.

► A concept of the tritium system was designed for the FDS-MFX. ► The system parameters were presented and discussed in detail. ► A theoretical analysis of tritium recovery system has been made on the operation condition. ► Three step TEP system was design and its permeating capacity was estimated. ► The model of three-column ISS and the SDS was also carried out.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , ,