Article ID Journal Published Year Pages File Type
272256 Fusion Engineering and Design 2012 6 Pages PDF
Abstract

A liquid breeder blanket has been developed in parallel with the International Thermonuclear Experimental Reactor (ITER) Test Blanket Module (TBM) program in Korea. The Korea Atomic Energy Research Institute (KAERI) has developed the common fields of a solid TBM such as design tools, structural material, fabrication methods, and He cooling technology to support this concept for the ITER. Also, other fields such as a liquid breeder technology and tritium extraction have been developed from the designed liquid TBM. For design tools, system codes for safety analysis such as Multi-dimensional Analysis of Reactor Safety (MARS) and GAs Multi-component Mixture Analysis (GAMMA) were developed for He coolant and liquid breeder. For the fabrication methods, Ferritic Martensitic Steel (FMS) to FMS and Be to FMS joinings with a Hot Isostatic Pressing (HIP) were developed and verified with a high heat flux test of up to 0.5–1.0 MW/m2. Moreover, three mockups were successfully fabricated and a 10-channel prototype is being fabricated to make a rectangular channel FW. For the integrity of the joining, two high heat flux test facilities were constructed, and one using an electron beam has been constructed. With the 6 MPa nitrogen loop, a basic heat transfer experiment for code validation was performed. From the verification of the components such as preheater and circulator, a 9 MPa He loop was constructed, and it supplies high temperature (500 °C) and pressure (8 MPa) He to the high heat flux test facility. For an electromagnetic (EM) pump development for circulating the liquid breeder, magnetohydrodynamic (MHD) experiment, and flow corrosion test, a PbLi breeder loop was constructed. From the performance test, the EM pump and magnet show their capability, and flow and static corrosion tests including oxide coating for corrosion protection were performed. For tritium extraction from the liquid breeder, a gas–liquid contact method was adopted and a tritium extraction chamber was constructed. For measurement of the tritium amount in the liquid breeder, permeation sensors have been developed.

► MARS and GAMMA were developed for He coolant and liquid breeder analysis. ► FMS/FMS and Be/FMS joining methods were developed and verified with high heat flux test. ► High temperature and pressure nitrogen and He loops were constructed for heat transfer experiment for developed codes validation. ► A PbLi breeder loop was constructed for components, MHD, and corrosion tests. ► A chamber for tritium extraction with a gas–liquid contact method was constructed.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , ,