Article ID Journal Published Year Pages File Type
272429 Fusion Engineering and Design 2011 16 Pages PDF
Abstract

The ITER diagnostic Upper Port Plug (UPP) is a water-cooled stainless steel structure aimed to integrate within vacuum vessel the plasma diagnostic systems, shielding them from neutron and photon irradiation. Due to the very intense heat loads expected, a proper cooling circuit has been designed to ensure an adequate UPP cooling with an acceptable thermal rise and an unduly high pumping power and to perform its draining and drying procedure by injection of pressurized nitrogen.A theoretical research activity has been launched at the Department of Nuclear Engineering of the University of Palermo aiming to investigate the hydraulic behaviour of the UPP Trapezoid Section cooling circuit under steady state conditions and during its draining and drying transient procedure. The research activity has been performed following a theoretical–computational approach and adopting the RELAP5 thermal–hydraulic system code.The Trapezoid Section cooling circuit characteristic functions have been derived under steady state conditions at various coolant temperatures for both the coolant flow paths at the present under consideration for this circuit. The distributions of coolant mass flow rates along the channels of the cooling circuit have been calculated too. Results show that the flow path characterized by right plate inlet has improved hydraulic performances.The transient behaviour of the Trapezoid Section cooling circuit has been investigated during the draining and drying operational transient procedure, considering realistic operative scenarios, for both the coolant flow paths at the present under consideration for the cooling circuit. In particular, it has been found out that the recently proposed flow path seems to allow the complete draining of the Trapezoid Section circuit, eliminating the need for the drying procedure.

► UPP TS hydraulic behaviour has been investigated under steady state and D&D transient conditions. ► A thermal–hydraulic system code has been adopted and a UPP TS model has been set-up and validated against results of steady state CFD analyses. ► The TS steady state hydraulic characteristic functions have been derived for two coolant flow paths showing that right plate inlet one is the most promising. ► Draining simulations indicate that the 4 MPa injection pressure is high enough to drain almost completely the circuit in a reasonable time (∼6 s). ► Results indicate that right plate inlet flow path allows the TS complete draining, eliminating the need for the drying procedure.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , ,