Article ID Journal Published Year Pages File Type
272438 Fusion Engineering and Design 2011 6 Pages PDF
Abstract

To understand the combined effect of plasma heating and neutron heating loadings, the distributions of temperature, stress, and strain in different two-dimensional first wall panel models under normal ITER operation condition were simulated using finite element method. The maximum temperature occurs at the Be armor, and reaches 461 °C. High thermal stresses (in the range of 80–200 MPa) are found at the interface between the Be armor and the CuCrZr layer. The maximum thermal stress reaches 324 MPa in the SS316L cooling tube (20 mm diameter), exceeding its yield strength and resulting in a maximum strain of about 1.7% at the tube inner surface. These simulation results are useful for the design and operation of ITER.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , ,