Article ID Journal Published Year Pages File Type
272866 Fusion Engineering and Design 2008 6 Pages PDF
Abstract

For the heating of plasma in steady-state superconducting tokamak (SST-1) (Y.C. Saxena, SST-1 Team, Present status of the SST-1 project, Nucl. Fusion 40 (2000) 1069–1082; D. Bora, SST-1 Team, Test results on systems developed for the SST-1 tokamak, Nucl. Fusion 43 (2003) 1748–1758), a neutral beam injector is provided to raise the ion temperature to ∼1 keV. This injector has a capability of injecting hydrogen beam with the power of 0.5 MW at 30 keV. For the upgrade of SST-1, power of 1.7 MW at 55 KeV is required. Further, beam power is to be provided for a pulse length of 1000S. We have designed a neutral beam injector (S.K. Mattoo, A.K. Chakraborty, U.K. Baruah, P.K. Jayakumar, M. Bandyopadhyay, N. Bisai, Ch. Chakrapani, M.R. Jana, R. Onali, V. Prahlad, P.J. Patel, G.B. Patel, B. Prajapati, N.V.M. Rao, S. Rambabu, C. Rotti, S.K. Sharma, S. Shah, V. Sharma, M.J. Singh, Engineering design of the steady-state neutral beam injector for SST-1, Fusion Eng. Des. 56 (2001) 685–691; A.K. Chakraborty, N. Bisai, M.R. Jana, P.K. Jayakumar, U.K. Baruah, P.J. Patel, K. Rajasekar, S.K. Mattoo, Neutral beam injector for steady-state superconducting tokamak, Fusion Technol. (1996) 657–660; P.K. Jayakumar, M.R. Jana, N. Bisai, M. Bajpai, N.P. Singh, U.K. Baruah, A.K. Chakraborty, M. Bandyopadhyay, C. Chrakrapani, D. Patel, G.B. Patel, P. Patel, V. Prahlad, N.V.M. Rao, C. Rotti, V. Sreedhar, S.K. Mattoo, Engineering issues of a 1000S neutral beam ion source, Fusion Technol. 1 (1998) 419–422) satisfying the requirements for both SST-1 and its upgrade. Since intense power is to be transported to SST-1 situated at a distance of several meters from the ion source, the optical quality of the beam becomes a primary concern. This in turn, is determined by the uniformity of the ion source plasma and the extractor geometry. To obtain the desired optical quality of the beam, stringent tolerances are to be met during the fabrication of ion extractor system.SST-1 neutral beam injector is based on positive ion source. The extraction system consists of three grids, each having extraction area of (width) 230 mm × (height) 480 mm and 774-shaped apertures of 8-mm diameter. To obtain horizontal focal length of 5.4 m and vertical of 7 m, each grid consists of two halves with 387 apertures. Two halves are inclined at an angle of 1.07 ± 0.01°. For long pulse operation, active water cooling is provided by in-laid down of dense network of 22 wavy semicircular (r = 1.1 ± 0.05 mm) cooling channels in the space available between the apertures. The required flatness of the copper plate is 100 μm and positioning tolerance of aperture is ±60 μm. The measurement obtained after fabrication is compared with the specifications. It is pointed out that fabrication within set tolerance limit could be achieved only through process of fabrication and high-resolution measurements.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,