Article ID Journal Published Year Pages File Type
2730262 Journal of Pain and Symptom Management 2011 14 Pages PDF
Abstract

ContextExperts agree that pain assessment in noncommunicative persons requires data from sources that do not rely on self-report, including proxy reports, health history, and observation of pain behaviors. However, there is little empirical evidence to guide clinicians in weighting or combining these sources to best approximate the person’s experience.ObjectivesThe aim of this exploratory study was to identify a combination of observer-dependent pain indicators that would be significantly more predictive of self-reported pain intensity than any single indicator. Because self-reported pain is usually viewed as the criterion measure for pain, self-reported usual and worst pains were the dependent variables.MethodsThe sample consisted of 326 residents (mean age: 83.2 years; 69% female) living in one of 24 nursing homes. Independent variables did not rely on self-report: surrogate reports from certified nursing assistants (CNAs) using the Iowa Pain Thermometer (IPT), Checklist of Nonverbal Pain Indicators (CNPI), Cornell Scale for Depression in Dementia (CSDD), Pittsburgh Agitation Scale (PAS), number of painful diagnoses, and Minimum Data Set (MDS) pain variables.ResultsIn univariate analyses, the CNA IPT scores were correlated most highly with self-reported pain. The final multivariate model for self-reported usual pain included CNA IPT, CSDD, PAS, and education; this model accounted for only 14% of the variance. The more extensive of the two final models for worst pain included MDS pain frequency, CSDD, CNA IPT, CNPI, and age (R2 = 0.14).ConclusionAdditional research is needed to develop a predictive pain model for nonverbal persons.

Related Topics
Life Sciences Neuroscience Neurology
Authors
, , ,