Article ID Journal Published Year Pages File Type
274311 Geotextiles and Geomembranes 2009 5 Pages PDF
Abstract

Prefabricated Vertical Drains (PVDs) are being used to accelerate the consolidation of subsoil for construction of high embankment on soft ground. The construction is carried out in stages and height of the first stage construction depends on in-situ undrained shear strength. Each subsequent stage construction is carried out after completion of either 90% primary consolidation or percent consolidation at inflection point. The height of subsequent stages depends upon the gain in undrained strength of subsoil. In this paper, the authors have advocated an approach to shorten the construction period for high embankments. In this approach, the first stage construction would be carried out based on the in-situ undrained shear strength of subsoil. Instead of waiting for 90% primary consolidation or percent consolidation at inflection point, the embankment is raised in layers of 0.2 m thickness. Based on the time required to gain strength with the construction of the 0.2 m layer, the waiting period is determined for each subsequent layers. The waiting period depends on soil parameters such as subsoil thickness, Cr/Cv ratio and different PVD factors viz. smear, drain spacing and well resistance, pattern of laying of PVD, etc. Using this approach, there would be increase in the consolidation rate and overall reduction in the construction period. A typical practical example has been solved to demonstrate the usefulness of this approach over the two conventional methods. For a 4.5 m high embankment, it is observed that waiting period is reduced by 77% and 43% as compared to the 90% primary consolidation method and inflection point method respectively.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , ,