Article ID Journal Published Year Pages File Type
275054 International Journal of Mining Science and Technology 2016 5 Pages PDF
Abstract

The microscopic morphology and pore structure characteristics of concrete with composite admixtures (fly ash and mineral powder) after chlorine salt erosion were analyzed via scanning electron microscopy (SEM) and mercury injection porosimetry (MIP), providing the basis for the design and maintenance of concrete shafts in coal mines. The above-mentioned characteristics were compared with the macroscopic characteristic of concrete fractures under uniaxial compression. The results show that the macroscopic fracture characteristics of concrete under uniaxial compression change from longitudinal split fracture and oblique section shear fracture to conjugate cant fracture, and the degree of breakage increases. Interface cracks, cement paste cracks, spherical surface cracks, and aggregate cracks appear in concrete under uniaxial compression. In the early stages of corrosion, the original cracks which are obvious are repaired. When the corrosion becomes more serious, cement paste cracks appear, and the number of harmful holes increases while the number of harmless holes decreases. This study also reveals the relationship between the macroscopic properties and microscopic structure of concrete under chloride salt erosion. Finally, the paper preliminarily discussed the relationship between the macroscopic properties and mesoscopic characteristics of concrete under chlorine salt erosion.

Keywords
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Economic Geology
Authors
, , , , , , ,