Article ID Journal Published Year Pages File Type
275349 International Journal of Pavement Research and Technology 2016 7 Pages PDF
Abstract

A double-layer structure model of pavements that considered interlayer contact status was established to manage the dowel-bar position deviation problem in rigid pavements. The deviation effect of three-dimensional positions, such as horizontal angle, vertical angle, and embedded depth, on joint load-transfer capacity was analyzed. A load-transfer capacity prediction model that considered dowel bar position deviation was established via ternary nonlinear regression. Load correction factor and its range were also proposed. This prediction model can effectively reflect the joint load-transfer capacity during dowel position deviation after verification via falling weight deflectometer testing. The horizontal angle of the dowel bar minimally affected joint load-transfer coefficient. By contrast, the joint load-transfer coefficient decreased almost linearly as the vertical angle increased. The coefficient reduced by approximately 12% when the vertical angle was 15°. Meanwhile, the load-transfer coefficient was maximized when a dowel bar was embedded in the middle of a surface. The coefficient would decline either upward or downward. The coefficient particularly decreased by 10% when the position was 2 cm downward.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,