Article ID Journal Published Year Pages File Type
275589 International Journal of Mining Science and Technology 2013 5 Pages PDF
Abstract

Effective recognition of a coalfield fire area improves fire-fighting efficiency and helps avoid potential geological hazards. Coalfield fire areas are hard to detect accurately using general geophysical methods. This paper describes simulations of shallow, buried coalfield fires based on real geological conditions. Recognizing the coalfield fire by Rayleigh wave is proposed. Four representative geological models are constructed, namely; the non-burning model, the pseudo-burning model, the real-burning model, and the hidden-burning model. Numerical simulation using these models shows many markedly different characteristics between them in terms of Rayleigh wave dispersion and Eigen displacement. These characteristics, as well as the shear wave velocity obtained by inverting the fundamental dispersion, make it possible to distinguish the type of the coalfield fire area and indentify the real and serious coalfield fire area. The results are very helpful for future application of Rayleigh waves for the detection of coalfield fire area.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Economic Geology
Authors
, , , , ,