Article ID Journal Published Year Pages File Type
275648 International Journal of Mining Science and Technology 2012 6 Pages PDF
Abstract

The effect of the fracture distribution on CO2 injection into coal seams was studied with a heterogeneous model having dual porosity to represent both the primary medium (the coal matrix) and the secondary medium (the fractures) under variable stress conditions. A numerical generation method and a digital image processing method were used to model the heterogeneous fracture distribution in the coal. The model solutions demonstrate that: (1) the fractures are the main channel for gas flow and their distribution has an important impact on the gas injection rate; (2) the fractures only affect the injection rate of CO2 into the coal but not the final storage amount; (3) when gas is injected into coal the fractures will first expand and then close due to the changing effective stresses and the adsorption induced swelling of coal grains. This fully coupled dual-porosity model with a heterogeneous fracture distribution provides a way to predict the CO2 injection into a coal seam.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Economic Geology
Authors
, , ,