Article ID Journal Published Year Pages File Type
276482 International Journal of Mining Science and Technology 2015 6 Pages PDF
Abstract

In order to analyze the propagation characteristics of shock wave and gas flow induced by outburst intensity, the governing equations of shock wave and gas flow propagation were put forward, and the numerical simulation boundary condition was obtained based on outburst characteristics. The propagation characteristics of shock wave and gas flow were simulated by Fluent software, and the simulation results were verified by experiments. The results show that air shock wave is formed due to air medium compressed by the transient high pressure gas which rapidly expands in the roadway; the shock wave and gas flow with high velocity are formed behind the shock wave front, which significantly decays due to limiting effect of the roadway wall. The attenuation degree is greater in the early stage than that in the late stage, and the velocity of gas convection transport is lower than the speed of the shock wave. The greater the outburst intensity is, the greater the pressure of the shock wave front is, and the higher the speed of the shock wave and gas flow is.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Economic Geology
Authors
, , , , ,