Article ID Journal Published Year Pages File Type
277488 International Journal of Solids and Structures 2014 12 Pages PDF
Abstract

An experimental program was carried out in a recently developed torsion shear apparatus to study the non-coaxiality of strain increment and stress directions in cross-anisotropic deposits of Fine Nevada sand. Forty-four drained torsion shear tests were performed at constant mean confining stress, σm, constant intermediate principal stress ratios, as indicated by b = (σ2 − σ3)/(σ1 − σ3), and constant principal stress directions, α. The experiments were performed on large hollow cylinder specimens deposited by dry pluviation and tested in an automated torsion shear apparatus. The specimens had height of 40 cm, and average diameter of 20 cm, and wall thickness of 2 cm. The stress–strain behavior of Fine Nevada sand is presented for discrete combinations of constant principal stress direction, α, and intermediate principal stress. The effects of these two variables on the non-coaxiality are presented. The experiments show that the directions of the strain increments do not in general coincide with the directions of stresses, and there is a switch from one to the other side between the two quantities.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,