Article ID Journal Published Year Pages File Type
277685 International Journal of Solids and Structures 2014 11 Pages PDF
Abstract

Constitutive equations for class of materials that possess granular microstructure can be effectively derived using granular micromechanics approach. The stress–strain behavior of such materials depends upon the underlying grain scale mechanisms that are modeled by using appropriate rate-dependent inter-granular force–displacement relationships. These force–displacement functions are nonlinear and implicit evolutions equations. The numerical solution of such equation under applied overall stress or strain loading can entail significant computational expense. To address the computations issue, an efficient explicit time-integration scheme has been derived. The developed model is then utilized to predict primary, secondary and tertiary creep as well as rate-dependent response under tensile and compressive loads for hot mix asphalt. Further, the capability of the derived model to describe multi-axial behavior is demonstrated through generations of biaxial time-to-creep failure envelopes and rate-dependent failure envelopes under monotonic biaxial and triaxial loading. The advantage of the approach presented here is that we can predict the multi-axial effects without resorting to complex phenomenological modeling.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,