Article ID Journal Published Year Pages File Type
277708 International Journal of Solids and Structures 2014 10 Pages PDF
Abstract

The effects of strain rate and temperature on the tension stress–strain responses of polycarbonate are experimentally investigated over a wide range of strain rates (0.001–1700 s−1) and temperatures (0–120 °C). A modified split Hopkinson tension bar is used for high-rate uniaxial tension tests. Experimental results indicate that the stress–strain responses of polycarbonate at high strain rates exhibit the nonlinear characteristics including the obvious yielding and strain softening. The tension behavior is strongly dependent on the strain rate and temperature. The values of yield stress and strain at yield present a dramatic increase at higher strain rates and decrease with the increase in temperature. Moreover, there exists a significant rate-sensitivity transition in the polycarbonate tension yield behavior. Based on the experimental investigation, a physically based three-dimensional elastoplastic constitutive model for the finite deformation of glassy polymers is used to characterize the rate-temperature dependent yield and post-yield behavior of polycarbonate when subjected to tension loading. The model results are shown close to the experimental data within the investigated strain-rate and temperature ranges.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,