Article ID Journal Published Year Pages File Type
277847 International Journal of Solids and Structures 2014 16 Pages PDF
Abstract

•A Cosserat surface is used to model a finite thickness spherical interphase.•All components are modeled as isotropic linear elastic materials.•The Cosserat interphase is a unified model valid for arbitrary material constants.•The accuracy of different models of the interphase is considered.

Interphases are often modeled as interfaces with zero thickness using jump conditions that can be developed based on approximate shell or membrane models which are valid for specific limited ranges of the elastic material parameters. For a two-dimensional problem it has been shown (Rubin and Benveniste, 2004) that the Cosserat model of a finite thickness interphase is a unified model that is accurate over the full range of elastic parameters. In contrast, many other interphase models are valid for only limited ranges of the elastic parameters. In this paper, the accuracy of different Cosserat models of a finite thickness interphase that connects a spherical inclusion to an infinite matrix is examined. Specifically, four Cosserat interphase models are considered: a general shell (GS)(GS), a membrane-like shell (MS)(MS), a simple shell (SS)(SS) and a generalized membrane (GM)(GM). The models (GS)(GS) and (MS)(MS) both satisfy restrictions on the strain energy function of the interphase that ensure exact solutions for all homogeneous three-dimensional deformations, while the other models (SS)(SS) and (GM)(GM) do not satisfy these restrictions. The importance of these restrictions is examined for the three-dimensional inhomogeneous inclusion problem being considered. This is the first test of the accuracy of an elastic interphase model for a spherical interphase.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,