Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
278149 | International Journal of Solids and Structures | 2012 | 9 Pages |
Most of the technologically relevant abrasive machining techniques for silicon (Si) such as lapping, sawing and grinding are based on the interaction of the silicon surface with a hard particle or asperity. It has been long established that the governing deformation mechanism for Si under such contact loading conditions is stress induced phase transformation. The present work introduces a novel phenomenological constitutive model for phase transformations of silicon set up in a thermomechanical framework of broad applicability. Taking into account experimental observations as well as first principle and molecular dynamics calculations, it captures both the cd-Si → β-Si transition upon compression and the β-Si → a-Si transition upon rapid decompression, which are most relevant for indenter loading. The model was numerically implemented in analogy to incremental plasticity and successfully applied for finite-element (FE) simulations of nanoindentation.