Article ID Journal Published Year Pages File Type
278153 International Journal of Solids and Structures 2012 10 Pages PDF
Abstract

Pinned connections and journal bearings with cylindrical conforming contacts are widely used as fundamental building blocks in machines and civil structures of civilization. It is critical to determine their stress fields and contact performances under desired configurations in order to successfully design them. This paper presents a numerical model to deal with such contacts, particularly with the general configuration–double interfaces. Necessary formulae are developed and numerical procedures are described in this paper. Efficient numerical methods, i.e., the discrete convolution-fast Fourier transformation (DC-FFT) method and the conjugate gradient method (CGM), are implemented in the algorithm. Validations are conducted against the Persson’s results and finite element results and demonstrate excellent agreement. This contact analysis can be useful for design engineers to evaluate stress and contact pressure distribution. Furthermore, this efficient method of determining radial displacement can be applied in an elasto-hydrodynamic lubrication analysis.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,