Article ID Journal Published Year Pages File Type
278155 International Journal of Solids and Structures 2012 12 Pages PDF
Abstract

This paper presents a fully automated numerical tool for computing the accurate effective properties of two-phase linearly elastic composites reinforced by randomly distributed spherical particles. Virtual microstructures were randomly generated by an algorithm based on molecular dynamics. Composites effective properties were computed using a technique based on Fast Fourier Transforms (FFT). The predictions of the numerical tool were compared to those of analytical homogenization models for a broad range of phases mechanical properties contrasts and spheres volume fractions. It is found that none of the tested analytical models provides accurate estimates for the whole range of contrasts and volume fractions tested. Furthermore, no analytical homogenization models stands out of the others as being more accurate for the investigated range of volume fractions and contrasts. The new fully automated tool provides a unique means for computing, once and for all, the accurate properties of composites over a broad range of microstructures. In due course, the database generated with this tool might replace analytical homogenization models.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,