Article ID Journal Published Year Pages File Type
278247 International Journal of Solids and Structures 2012 11 Pages PDF
Abstract

In the present paper we provide a method to determine the load causing delamination along an interface in a composite structure. The method is based on the elastic interface model, according to which the interface is equivalent to a bed of linear elastic springs, and on Finite Fracture Mechanics, a crack propagation criterion recently proposed for homogeneous structures. The procedure outlined is general. Details are given for the pull–push shear test. For such geometry, the failure load is obtained and compared with the estimates provided by stress concentration analysis and Linear Elastic Fracture Mechanics. It is seen that Finite Fracture Mechanics provides intermediate values. Furthermore, it is shown that the predictions provided by Finite Fracture Mechanics are almost coincident with the ones provided by the Cohesive Crack Model. As far as we are concerned with the determination of the failure load, the advantage of using Finite Fracture Mechanics with respect to the Cohesive Crack Model is evident, since a troublesome analysis of the softening taking place in the fracture process zone is not necessary. A final comparison with classical fracture criteria based on critical distances, such as the average stress criterion, concludes the paper.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,