Article ID Journal Published Year Pages File Type
2782828 Bone 2007 8 Pages PDF
Abstract

The strain (i.e. deformation) history influences the degree of mineralization of cortical bone (DMB) as well as its osteonal microstructure. This study aimed to examine the relationships of stress and strain distributions with the variations in DMB and the osteonal orientations in the cortical bone of the human mandibular condyle. It was hypothesized that strains are inversely proportional to local DMB and that the principal strains are oriented parallel to the osteons.To test this, ten human mandibular condyles were scanned in a microCT system. Finite element models were created in order to simulate static clenching. Within each condyle, 18 volumes of interest were selected to analyze regional differences in DMB, stress and strains.Subchondral bone showed a lower equivalent strain (2652 ± 612 με) as compared to the anterior (p = 0.030) and posterior cortex (p = 0.007) and was less mineralized. Contrary to our hypothesis, the results show that strains correlated positively with regional variations in DMB (r = 0.750, p < 0.001). In the anterior and the posterior cortex, the first principal strain was parallel to the cortical surface and oriented supero-inferiorly with a fan-like shape. In subchondral bone, the first and the second principal strain were parallel to the surface and oriented antero-posteriorly and medio-laterally, respectively.It was concluded that the strain distributions, by themselves, cannot explain the regional differences found in DMB. In agreement with our second hypothesis, the orientation of the osteonal network of the mandibular condyle was closely related to the strain orientations. The results of this study suggest that the subchondral and the cortical bone are structured to ensure an optimal load distribution within the mandibular condyle and have a different mechanical behaviour. Subchondral bone plays a major role in the transmission of the strains to the anterior and posterior cortex, while these ensure an optimal transmission of the strains within the condylar neck and, eventually, to the mandibular ramus.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Developmental Biology
Authors
, , , , , ,