Article ID Journal Published Year Pages File Type
278552 International Journal of Solids and Structures 2011 9 Pages PDF
Abstract

Imperfect bonding between constituents is studied where displacements, electric and magnetic static potentials are considered to have a jump proportional to the normal component of the mechanical traction, electric displacement and magnetic flux. This condition may model various interface damages or the thin glue layer between two adjacent phases. They are termed as the mechanically compliant, dielectrically weakly capacitance and magnetically weakly inductance at the interface. It is shown that while the more imperfect the interface is, the overall properties become weaker, such as longitudinal shear stiffness, out-of-plane piezoelectric coupling, and magnetoelectric coupling. Out-of-plane piezomagnetic coupling, transverse dielectric permittivity and transverse dielectric permeability exhibit no influence by imperfect bonding. The imperfect interface proposed is mimicked by the springs, capacitors and inductances for the mechanical, electric and magnetic interaction between the phases and are highly sensitive to the interphase properties. The results are compared mainly with the self consistent model reported in the literature and good agreements are shown.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , , , , ,