Article ID Journal Published Year Pages File Type
2786266 International Journal of Developmental Neuroscience 2012 11 Pages PDF
Abstract

Flavonoids are polyphenolic compounds that are integral components of the human diet, universally present as constituents of fruits and vegetables as well as plant-derived foods and beverages such as oil, tea, and red wine. The biological activities of flavonoids cover a very broad spectrum, from anticancer and antibacterial activities to inhibition of bone reabsorption and modulation of inflammatory response. Although emerging evidence has suggested that flavonoids might have an impact on brain pathology and aging, their role as a mediator in interactions between neurons and glial cells has been poorly explored. In the present work, we have performed a screening of flavonoid actions by analyzing the effects of hesperidin, quercetin and rutin on murine cerebral cortex astrocytes and neural progenitors. Treatment of astrocytes with flavonoids did not interfere with cell viability and proliferation. However a culture of neural progenitors with conditioned medium from hesperidin treated-astrocyte (H-CM) yielded produced a 41% and 25% increase in the number of neural progenitors and post-mitotic neurons, respectively. The H-CM effect was mainly due to modulation of neuronal progenitor survival. Pools of astrocyte and oligodendrocyte progenitors were not affected by H-CM (hesperidin), Q-CM (quercetin) and R-CM (rutin). Q-CM and R-CM did not increase neuronal population. These results suggest that H-CM might be composed by a new factor that could modulate neuroglial interactions during central nervous system development and opens the possibility for using flavonoids as new therapeutic strategies for neurodegenerative diseases.

► Hesperidin treated-astrocyte (H-CM) enhanced neural progenitors and the neuronal population. ► Enhancement was mainly due to modulation of neuronal progenitor survival. ► A new factor of H-CM modulates interactions during CNS development. ► Our results may lead to new therapeutic strategies for neurodegenerative diseases.

Keywords
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Developmental Biology
Authors
, , ,